
C++ Toolkit Book The Global Alignment Module

19-1

19. The Global Alignment Module
Created: September 16, 2003
Updated: September 26, 2003

The Global Alignment Library [xalgoalign:include | src]
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
The library contains C++ classes encapsulating pairwise global sequence alignment algorithms frequently
used in Computational Biology and applications.

• CNWAligner is a base class for global alignment algorithm classes. The class implements a generic
Needleman-Wunsch algorithm producing pairwise alignment of nucleotide or protein sequences. The
implementation uses affine penalty model and supports end space free mode, useful in many
applications where ends of sequences may not align. The classical Needleman-Wunsch algorithm is
known to have quadratic memory and CPU requirements which often seriously limits its application.
However, in presence of partial alignment patterns such as ordered high scoring pairs, the problem
can be split into a number of smaller ones altogether imposing less space and CPU requirements.
CNWAligner utilizes this idea by providing a way to specify guides representing portions of expected
or desired alignment.

• CMMAligner follows the Hirschberg's divide-and-conquer approach (developed also by Myers and
Miller) under which the amount of space required to align two sequences globally becomes a linear
function of sequence's lengths. While the latter is achieved at a cost of up to twice longer running
time, a multithreaded version of the algorithm can run even faster than the classical Needleman-
Wunsch in a multiple-CPU environment.

• CSplicedAligner is an abstract base for algorithms calculating cDna/mRna-to-genomic, or spliced
alignments. Spliced alignment algorithms specifically accounts for splice signals in their dynamic
programming recurrences resulting in better alignments for these particular but very important types
of sequences.

Chapter Outline
The following is an outline of the chapter topics:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/align
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/align

C++ Toolkit Book The Global Alignment Module

19-2

• Computing pairwise global sequence alignments

• Initialization

• Parameters of alignment

• Computing

• Alignment transcript

• Aligning sequences in linear space

• The idea of the algorithm

• Implementation

• Computing spliced sequences alignments

• The problem

• Implementation

• Formatting computed alignments

• Formatter object

Demo Cases [src/algo/align/demo/nwa] [src/algo/align/demo/splign]

Computing pairwise global sequence alignments
Generic pairwise global alignment functionality is provided by CNWAligner. This functionality is
discussed in the following topics:

• Initialization

• Parameters of alignment

• Computing

• Alignment transcript

Initialization
Two constructors are provided to initialize the aligner:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/align/demo/nwa
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/align/demo/splign

C++ Toolkit Book The Global Alignment Module

19-3

CNWAligner(const char* seq1, size_t len1,
 const char* seq2, size_t len2,
 const SNCBIPackedScoreMatrix* scoremat = 0);

CNWAligner(void);

The first constructor allows to specify sequences and the score matrix at the time of the object's
construction. Note that the sequences must be in proper strands, as the aligners do not build
reverse complimentaries. The last parameter must be a pointer to a properly initialized SNCBI-
PackedScoreMatrix object or zero. If it is a valid pointer, then the sequences are verified against
the alphabet contained in the SNCBIPackedScoreMatrix object and its score matrix is further
used in dynamic programming recurrences. Otherwise, sequences are verified against IUPACna
alphabet and match/mismatch scores are used to fill in the score matrix.

The default constructor is provided to support reuse of aligner object when many sequence
pairs share same type and alignment parameters. In this case, the following two functions must
be called prior to computing the first alignment in order to load the score matrix and the
sequences:

void SetScoreMatrix(const SNCBIPackedScoreMatrix* scoremat = 0);
void SetSequences(const char* seq1, size_t len1,
 const char* seq2, size_t len2,
 bool verify = true);

where the meaning of scoremat is the same as above.

Parameters of alignment
CNWAligner realizes affine gap penalty model, which means that every gap of length L (with
possible exception of end gaps) contributes Wg+L*Ws to the total alignment score, where Wg is a
cost to open the gap and Ws is a cost to extend the gap by one basepair. These two parameters
are always in effect when computing sequence alignments and can be set with

void SetWg (TScore value); // set gap opening score
void SetWs (TScore value); // set gap extension score

To indicate penalties, both gap opening and gap extension scores are assigned with negative
values.

Many applications (such as the shotgun sequence assembly) benefit from a possibility to
avoid penalizing end gaps of alignment, since the relevant sequence's ends may not be expected
to align. CNWAligner supports this through a built-in end-space free variant controlled with a sin-
gle function:

void SetEndSpaceFree(bool Left1, bool Right1, bool Left2, bool Right2);

C++ Toolkit Book The Global Alignment Module

19-4

The first two arguments control the left and the right ends of the first sequence. The other two
control the second sequence's ends. True value means that end spaces will not be penalized.
Although arbitrary combination of end-space free flags can be specified, judgement should be
used in order to get plausible alignments.

The following two functions are only meaningful when aligning nucleotide sequences:

void SetWm (TScore value); // set match score
void SetWms (TScore value); // set mismatch score

The first of them sets a bonus associated with every matching pair of nucleotides. The second
function assigns a penalty for every mismatching aligned pair of nucleotides. It is important that
values set with these two function will only take effect after SetScoreMatrix() is called (with a
zero pointer, which is the default).

One thing that could limit a scope of global alignment applications is that the classical algo-
rithm takes quadratic space and time to evaluate the alignment. One way to deal with it is to use
the linear-space algorithm encapuslated in CMMAligner. However, when some pattern of align-
ment is known or desired, it is worthwhile to explicitly specify "mile-posts" through which the
alignment should pass. Long high-scoring pairs with 100% identity (no gaps or mismatches) are
typically good candidates for them. From the algorithmic point of view, the pattern splits the
dynamic programming table into smaller parts thus alleviating space and CPU requirements. The
following function is provided to let the aligner know about such guiding constrains:

void SetPattern(const vector<size_t>& pattern);

Pattern is a vector of hits specified by their zero-based coordinates as in the following example:

// the last parameter ommited to indicate nucl sequences
CNWAligner aligner (seq1, len1, seq2, len2);
// we want coordinates [99,119] and [129,159] on seq1 be aligned
// with [1099,1119] and [10099,10129] on seq2.
const size_t hits [] = { 99, 119, 1099, 1119, 129, 159, 10099, 10129 };
vector<size_t> pattern (hits, hits + sizeof(hits)/sizeof(hits[0]));
aligner.SetPattern(pattern);

Computing
To start computations, call Run(), which returns the averall alignment score having aligned the
sequences. Score is a scalar value associated with the alignment and depending on parameters
of the alignment. The global alignment algorithms align two sequences so that the score is the
maximal over all possible alignments.

Alignment transcript
The immediate output of the global alignment algorithms is a transcript. Transcript serves as a
basic representation of alignments and is simply a string of elementary commands transforming
the first sequence into the second one on a per-character basis. These commands (transcript
characters) are (M)atch, (R)eplace, (I)nsert and (D)elete. For example, the alignment

C++ Toolkit Book The Global Alignment Module

19-5

TTC-ATCTCTAAATCTCTCTCATATATATCG
||| |||||| |||| || ||| ||||
TTCGATCTCT-----TCTC-CAGATAAATCG

has a transcript

MMMIMMMMMMDDDDDMMMMDMMRMMMRMMMM

Several functions are available to retrieve and analyze the transcript:

// raw transcript
const vector<ETranscriptSymbol>* GetTranscript(void) const {
 return &m_Transcript;
}

// converted transcript vector
void GetTranscriptString(vector<char>* out) const;

// transcript parsers
size_t GetLeftSeg(size_t* q0, size_t* q1,
 size_t* s0, size_t* s1,
 size_t min_size) const;
size_t GetRightSeg(size_t* q0, size_t* q1,
 size_t* s0, size_t* s1,
 size_t min_size) const;
size_t GetLongestSeg(size_t* q0, size_t* q1,
 size_t* s0, size_t* s1) const;

The last three functions search for a continuous segment of matching characters and return it
in sequence coordinates through q0, q1, s0, s1.

Alignment transcript is a simple yet complete representation of alignments that can be used
to evaluate virtually every characteristic or detail of any particular alignment. Some of them, such
as percent identity or the number of gaps or mismatches could be easily restored from the tran-
script alone, while others such as protein alignments' scores would require availability of original
sequences.

Aligning sequences in linear space
CMMAligner is an interface to a linear space variant of the global alignment algorithm.This func-
tionality is discussed in the following topics:

• The idea of the algorithm

• Implementation

C++ Toolkit Book The Global Alignment Module

19-6

The idea of the algorithm
That the classical global alignment algorithm requires quadratic space could be a serious restric-
tion in sequence alignment. One way to deal with it is to use alignment patterns. Another
approach was first introduced by Hirschberg and became known as a divide-and-conquer strat-
egy. At a coarse level, it suggests computating of scores for partial alignments starting from two
opposite corners of the dynamic programming matrix while keeping only those of them located at
the middle rows or columns. Then after the analysis of the adjacent scores it is possible to deter-
mine cells on those lines through which the global alignment's backtrace path will go. This
approach reduces space to linear while only doubling the worst-case time bound. For details see,
for example, the Dan Gusfield's "Algorithms on Strings, Trees and Sequences".

Implementation
CMMAligner inherites its public interface from CNWAligner. The only additional method allows
to toggle multiple-threaded version of the algorithm.

The divide-and-conquer strategy suggests natural parrallelization where blocks of the
dynamic programming matrix are evaluated simultaneously. A theoretical acceleration limit
imposed by the current implementation is 0.5. In order to use multiple-threaded version, call
EnableMultipleThreads(). The number of simultaneously running threads will not exceed the
number of CPUs installed on your system.

When comparing alignments produced with the linear-space version with those produced by
CNWAligner, be ready to find many of them similar though not exactly the same. This is normal,
since several optimal alignmens may exist for each pair of sequences.

Computing spliced sequences alignments
This functionality is discussed in the following topics:

• The problem

• Implementation

The problem
The spliced sequence alignment arises as an attempt to address the problem of eukaryotic gene
structure recognition. Tools based on spliced alignments expoit the idea of comparing genomic
sequences to their transcribed and spliced products, such as mRna, cDna or EST sequences.
The final objective for all spliced alignment algorithms is to come up with a combination of seg-
ments on the genomic sequence that:

• makes up a sequence very similar to the spliced product, when the segments are
concatenated.

• satisfies certain statistically determined conditions, such as consensus splice sites and lengths
of introns.

C++ Toolkit Book The Global Alignment Module

19-7

According to the classical eukaryotic transcription and splicing mechanism, pieces of genomic
sequence do not get shuffled. Therefore, one way of revealing the original exons could be to align
the spliced product with its parent gene globally. However, due to the specificity of the process in
which the spliced product is constructed, the generic global alignment with the affine penalty
model may not be enough. To address this accurately, dynamic programming recurrences should
specifically account for introns and splices signals.

Algorithms described in this chapter exploit this idea and address a refined spliced alignment
problem presuming that

• the genomic sequence contains only one location from which the spliced product could have
originated.

• the spliced product and the genomic sequence are in plus strand.

• the Poly(A) tail and any other chunks of the product not created through the splicing were cut
off, although a moderate level of sequencing errors on genomic, spliced, or both sequences is
allowed.

In other words, the library classes provide a basic spliced alignment algorithms to be used in
more sophisticated applications. One real-life application, Splign, can be found under demo cases
for the library.

Implementation
There is a small hierarchy of three classes involved in spliced alignment facilitating a quality/
performance trade-off in case of distorted sequences:

• CSplicedAligner-abstract base for spliced aligners.

• CSplicedAligner16-accounts for the three conventional splices (GT/AG, GC/AG, AT/AC) and
a generic splice; uses 2 bytes per backtrace matrix cell. Use this class with high-quality
genomic sequences.

• CSplicedAligner32-accounts for the three conventionales and splices that could be produced
by damaging bases of any conventional; uses 4 bytes per backtrace matrix cell. Use this
classes with distorted genomic sequences.

The abstract base class for spliced aligners, CNWSplicedAligner, inherites an interface from
its parent, CNWAligner, adding support for two new parameters: intron penalty and minimal
intron size (the default is 50).

All classes assume that the spliced sequence is the first of the two input sequences passed.
By default, the classes do not penalize gaps at the ends of the spliced sequence. Default intron
penalties are chosen so that the 16-bit version is able able to pick out short exons while the 32-bit
version is generally more conservative.

As with the generic global alignment, the immediate output of the algorithms is the alignment
transcript. For a sake of spliced alignments, the transcript's alphabet is augmented to accomo-
date introns as a special sequence editing operation.

C++ Toolkit Book The Global Alignment Module

19-8

Formatting computed alignments
This functionality is discussed in the following topics:

• Formatter object

Formatter object
CNWFormatter is a single place where all different alignments representations are created. The
only argument to its constructor is the aligner object that actually was or will be used to align the
sequences.

The alignment must be computed prior to formatting. If the formatter is unable to find the
computed alignment in the aligner that was referenced to the constructor, an exception will be
thrown.

To format the alignment as a CSeq_align structure, call

void AsSeqAlign(CSeq_align* output) const;

To format it as text, call

void AsText(string* output, ETextFormatType type, size_t line_width = 100) const;

Supported text formats and their ETextFormatType constants are:

• Type 1 (eFormatType1):

TTC-ATCTCTAAATCTCTCTCATATATATCG
TTCGATCTCT-----TCTC-CAGATAAATCG
 ^ ^

• Type 2 (eFormatType2):

TTC-ATCTCTAAATCTCTCTCATATATATCG
||| |||||| |||| || ||| ||||
TTCGATCTCT-----TCTC-CAGATAAATCG

• Gapped FastA (eFormatFastA):

>SEQ1
TTC-ATCTCTAAATCTCTCTCATATATATCG
>SEQ2
TTCGATCTCT-----TCTC-CAGATAAATCG

C++ Toolkit Book The Global Alignment Module

19-9

• Table of exons (eFormatExonTable) - spliced alignments only. The exons are listed from
left to right in a tab-separated columns. The columns represent sequence IDs, alignment
lengths, percent identity, coordinates on the query (spliced) and the subject sequences
and a short annotation including splice signals.

• Extended table of exons (eFormatExonTableEx) - spliced alignments only. In addition to
the nine columns, the full alignment transcript is listed for every exon.

• ASN.1 (eFormatASN)

